A.P. Chemistry Quiz: Hess	s's Law and Calorimetry	7		
Name				
MULTIPLE CHOICE. Cho	oose the one alternativ	e that best completes t	the statement or answe	rs the question.
1) For a given proc	ess at constant pressure	e , ΔH is negative. This	means that the process	is
A) exothermic				
B) equithermic	2			
C) energy				
D) endothermi	c			
E) a state func	tion			
2) The value of ΔH formed in this re		is -72 kJ. How many	kJ of heat are released w	when 1.0 mol of HBr is
$H_2(g)$	$+ Br_2(g) \rightarrow 2HBr(g)$			
A) 144	B) -72	C) 36	D) 72	E) 0.44
	° for the reaction below vater is kJ.	is -126 kJ. The amour	nt of heat that is released	d by the reaction of 25.0 g
2Na ₂ O ₂	(s) + $2H_2O(l) \rightarrow 4Na$	$nOH(s) + O_2(g)$		
A) -126	B) 40.4	C) 67.5	D) 80.8	E) 20.2
				e sample increases from
				of the sample isg
A) 72	B) 8.1	C) 1.5	D) 65	E) 6.6
5) ΔH for the reacti	ion			
IF ₅ (g)	\rightarrow IF ₃ (g) + F ₂ (g)			
iskJ, g	ive the data below.			
IF (g) +	$F_2(g) \rightarrow IF_3(g)$	$\Delta H = -390 \text{ kJ}$		

C) +1135

D) -35

E) +355

IF (g) + $2 F_2$ (g) \rightarrow IF₅ (g) $\Delta H = -745 \text{ kJ}$

B) +35

A) -1135

Answer Key

Testname: QUIZ_HESS_CALORIMETRY_CH_06.TST

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) A ID: chem9b 5.1-30
- 2) C ID: chem9b 5.1-34
- 3) E ID: chem9b 5.1-36
- 4) C ID: chem9b 5.1-53
- 5) E ID: chem9b 5.1-62

(exothermic

Hz+
$$Br_z \rightarrow 2HBr$$

1.0 mol $HBr_x = \frac{-72 \, kJ}{2 \, \text{mol } HBr} = -36 \, kJ$
 $\Delta H^\circ = -36 \, kJ$, thus $36 \, kJ$ of heat is released

25.0g
$$Na_zO_{z} \times \frac{1}{78.0} \frac{1 \text{ ml MbO}_{z}}{233} \times \frac{-126 \text{ kJ}}{2 \text{ mella}O_{z}} = -20.2 \text{ kJ}$$

$$\Delta If = -20.2 \text{ kJ}; \quad 20.2 \text{ kJ of heat is released } E$$

$$\begin{array}{c} (4) & 9 = +9.865 \\ \Delta T = T_f - T_i = 30.5 - 23.2 = 7.3^{\circ}C = 7.3 K \\ C = 0.905 \\ gK \end{array}$$

$$9 = MCAT \Rightarrow M = \frac{9}{CAT} = \frac{9.86J}{0.90J}(7.3K) = 1.50g$$

Version A (contid)

eqn 2 reversed: $IF_5 \rightarrow IF + EF_2 \quad \Delta H = +745 k$. $+ eqn 1: \quad F_5 \rightarrow F_2 + IF_3 \quad \Delta H = +355 k$ $F_5 \rightarrow F_2 + IF_3 \quad \Delta H = +355 k$

 $\stackrel{\frown}{\mathcal{E}}$